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ABSTRACT / Remotely sensed data have been used exten-
sively for environmental monitoring and modeling at a number
of spatial scales; however, a limited range of satellite imaging
systems often constrained the scales of these analyses. A
wider variety of data sets is now available, allowing image data

to be selected to match the scale of environmental structure(s)
or process(es) being examined. A framework is presented for
use by environmental scientists and managers, enabling their
spatial data collection needs to be linked to a suitable form of
remotely sensed data. A six-step approach is used, combin-
ing image spatial analysis and scaling tools, within the context
of hierarchy theory. The main steps involved are: (1) identifica-
tion of information requirements for the monitoring or manage-
ment problem; (2) development of ideal image dimensions
(scene model), (3) exploratory analysis of existing remotely
sensed data using scaling techniques, (4) selection and evalua-
tion of suitable remotely sensed data based on the scene model,
(5) selection of suitable spatial analytic techniques to meet infor-
mation requirements, and (6) cost–benefit analysis. Results from
a case study show that the framework provided an objective
mechanism to identify relevant aspects of the monitoring prob-
lem and environmental characteristics for selecting remotely
sensed data and analysis techniques.

Environmental monitoring and modeling applica-
tions from local to global scales commonly use remotely
sensed data; however, the limited variety of imaging
systems often constrained the scales of these analyses.
Successful launches of commercial and government
satellites over the past and next five years will result in
a significant increase in the number of available satel-
lite based imaging sensors. By the year 2005 there are
expected to be up to 30 satellites with spatial resolu-
tions ranging from 0.3 m to 2.5 km and multispectral to
hyperspectral wavebands (ASPRS 1996, Aplin and oth-
ers 1997, Stoney 1997). An increased variety of image
data sets and image-based map products will be avail-
able for use, allowing the scale of environmental struc-
ture or processes being examined to determine the
most suitable image data. In the past, use of remote
sensing to address problems in terrestrial ecology was
constrained to a limited number of data sets. A few
explicit approaches were provided to determine appro-

priate scale at which to acquire and process image data
(Roughgarden and others 1991, Marceau and others
1994; Atkinson 1997, Barnsley and others 1997, Stein
and others 1998, Green and others 2001, Franklin
2001). Given the expected increase in the variety of
image data sets becoming available and the recognition
of explicit natural scales of ecological structures and
processes, it is paramount to develop a framework or
science of scale that explicitly links: (1) the scale(s) at
which information on environmental structures or pro-
cesses is required; and (2) suitable image data sets
(Marceau 1999, Marceau and Hay 1999). This will be
achieved by integrating techniques and elements of
theory for selecting appropriately scaled remotely
sensed data and analysis techniques.

A framework has been developed by combining con-
cepts from remote sensing, spatial analysis, and land-
scape ecology to provide environmental scientists and
managers with an objective basis for selecting “optimal”
data sets and analysis methods. The framework was
initially developed for coastal environments due to the
urgent need for effective monitoring programs in these
regions in response to their high population levels,
resource utilization, and disturbance levels. This paper
outlines a modified version of the framework devel-
oped by Phinn and Stow (1996), Phinn (1997, 1998)
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and Phinn and others (2000a, b), in a format that can
be used by general environmental scientists.

The framework developed by Phinn (1997, 1998)
relies on the premise that the component structures
and processes of an environment can be treated as a
scalar hierarchy, with attributes occurring at specific
spatial and temporal scales (Allen and Starr 1982,
Strahler and others 1986, Hay and others 2001). In its
current and future forms, remotely sensed data offer a
true multiscale sampling tool and an optimal data set
can be chosen by identifying the spatial scale of an
environmental structure or process of interest and then
selecting an image data set also collected at that scale or
aggregating fine spatial resolution data (Atkinson 1997,
Curran and others 1997, Cracknell 1998, Frohn 1998,
Hay and others 2001). By identifying component struc-
tures and their characteristic scales in an environment
using spatial statistics and constructs from hierarchy
theory or a modified form of hierarchy theory, such as
the hierarchical patch dynamics paradigm (Wu 1999),
specific structures or processes relevant to a monitoring
project can be delimited and identified as the target
elements for a scene model (Strahler and others 1986).
The scene model defines how an environment will
appear when imaged by a remote sensing system (that
has specific sampling dimensions). Working backwards

from the landscape element to a scene model (Figure
1), appropriate remotely sensed data dimensions are
set to enable detection and measurement of the focal
scale structure or process (landscape element). Hence,
the output from the framework is a scene model defin-
ing the dimensions of an ideal image data set required
to collect information on a landscape structure or pro-
cess of interest.

Although the necessary techniques and elements of
theory exist for selecting appropriately scaled or aggre-
gated remotely sensed data and analysis techniques,
they have not been integrated explicitly to meet envi-
ronmental monitoring needs. Approaches for selecting
the scale(s) of remotely sensed data for examining
specific environmental structures or processes have fo-
cused intensively on the use of spatial statistics and have
been reviewed in Woodcock and Strahler (1987), Gar-
cia-Moliner and others (1993), Marceau and others
(1994), Quattrochi and Goodchild (1997), Stein and
others (1998), Wulder and Boots (1998), and Marceau
and Hay (1999). Hierarchy theory has been applied
extensively to examine the spatial and temporal order-
ing of environmental structures and processes (e.g.,
Meentemeyer 1989, O’Neill and others 1989, Walker
and Walker 1991, DeAngelis and White 1994, Yool
1999); however, it has only been applied in a limited

Figure 1. The data flow in remote sensing and various models used. Modified from Graetz (1990:19), Phinn (1998:3458), and
Phinn and others (2000b).
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sense to establish the components of an environment,
their characteristics scale(s), and then remotely sensed
data were matched to these scales (Hay and others
1997, 2001, Phinn and others 2000a, b). The following
sections present a more detailed explanation of the
framework for use in environmental monitoring and
management. To demonstrate the framework’s appli-
cability, results from an environmental monitoring pro-
gram in wetlands of southern California that was de-
signed with and without the framework are presented.

Methods—The Framework

The components of the framework for selecting a
suitable type of remotely sensed data for a mapping or
monitoring project concerned with ecological variables
are listed below, and the following text provides an
explanation of how to implement the framework: (1)
identification of information requirements for the
mapping or monitoring problem, (2) scene model
specification based on information required and envi-
ronment type, (3) exploratory analysis of existing re-
motely sensed data, (4) selection and evaluation of
suitable remotely sensed data based on the scene
model, (5) selection of suitable spatial analytic tech-
niques to meet information requirements, and (6)
cost–benefit analysis.

Identification of Input Information Requirements

Several basic types of information on the mapping
or monitoring project should be identified first to link
the data and information required on vegetation struc-
tures and their measurement or representation in re-
motely sensed data at specific scales. The project spec-
ifications determine the type of information required,
environment type, scale(s) of required information,
acceptable error levels, available time and finances, and
whether a prescribed processing technique is to be
used. For coastal environments, the framework refer-
ences a coastal classification system developed in Phinn
(1997) to define the characteristic spatial and temporal
scales of structures and processes in the environment to
be monitored. For other environments, relevant litera-
ture or knowledge of the area should be used to iden-
tify the key environmental structures or processes.
These information requirements are summarized in
tabular format and then used to identify remotely
sensed data requirements.

Scene Model Specification

Information requirements associated with an envi-
ronmental mapping or monitoring project should be
organized using concepts from ecological hierarchy

theory and image spatial analysis to specify how the
target environment should appear in remotely sensed
data. The scene model provides such a construct, im-
plicitly linking hierarchy theory and remotely sensed
data by specifying which environmental elements can
be identified from an image with specific spatial dimen-
sions (Hay and others 1997, 2001). For example, if
average canopy diameter for extensive areas of forested
landscape is required as input to a faunal habitat suit-
ability model, a hierarchical model (Franklin and
Woodcock 1997) links tree canopy parameters charac-
terizing forest stands to forest cover types. This dictates
that sensor spectral resolution should distinguish tree
canopy from background, and spatial (pixel) dimen-
sions should range between subcanopy size and not
more that several times canopy size, depending on
whether H- or L-resolution information extraction
methods are used. The scene model provides a stan-
dardized format in which all the relevant scalable di-
mensions of remotely sensed data are identified for a
specific application. These include the spatial, spectral,
radiometric and temporal dimensions (Table 1).

Depending on the minimum scale or smallest target
feature to be identified and the extent of the project area,
a recommendation is made on both the dimensions of the
ground-resolution-element (GRE) or pixel size and image
extent, to enable the environmental structure or process
of interest to be detected by the imaging system. Pub-
lished research or recent field data on the reflectance or
absorption characteristics of the prevalent features in the
project environment are then examined to select the
sensor type, spectral bands, and radiometric sensitivity
most suited to discriminating scene elements or to esti-
mating their condition. Temporal dimensions specify the
optimum time and repeat frequency for collecting re-
motely sensed data to maximize the extraction of re-
quired information. Temporal dimensions for the scene
model are identified from the project’s temporal con-
straints, any multitemporal analysis requirements and the
characteristic temporal variability of the environmental
structure or process of interest. When a processing tech-
nique is prescribed with the information requirements,
the scene model parameters are specified with reference
to the spatial, spectral, radiometric and temporal require-
ments of the processing technique. Similar to the “Infor-
mation Requirements” section, the scene model specifi-
cations are summarized in tabular format, e.g., for the
coastal environment (Table 1).

2.3 Exploratory Analysis of Available Remotely
Sensed Data

Once identified, the ideal image dimensions speci-
fied in the scene model can be tested by using them to
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analyze extant remotely sensed data for the mapping or
monitoring site. Four steps are followed in this proce-
dure. In the first step any preprocessing steps already
applied to extant remotely sensed data are identified in
order to build a data lineage. The most critical parts of
exploratory spatial data analytic (ESDA) approach are
the techniques applied to estimate spatial dimensions
of environmental structures or processes present in an
image data set (Garcia-Moliner and others 1993,
Marceau and others 1994, Hay and others 1997, Frohn
1998, Griffiths and Mather 2000). ESDA approaches
range in complexity from visual interpretation based
on scene models (Strahler and others 1986) to image
classification, segmentation, and spatial structure func-
tions to quantify the dimensions of dominant spatial
features in the scene. Spatial statistical functions, such
as semivariograms, and multiscale decompositional
techniques, such as wavelet analyses and object specific
analysis/upscaling, have been successfully applied to
identify characteristic spatial scales of environmental
structures and processes in images (Woodcock and oth-
ers 1988, Cohen and others 1990, Phinn and Stow 1996,
Curran and others 1997, Phinn and Hill 1998, Frohn
1998, Stein and others 1998, Wulder and Boots 1998,
Hay and others 2001). Similarly, the specifications for

spectral and radiometric dimensions are verified based
on analysis of representative samples of pixel digital
numbers (reflectance or radiance) for each scene ele-
ment. Finally, temporal dimensions can be assessed by
examining the spatial, spectral, and radiometric dimen-
sions as described above for image data sets from mul-
tiple dates.

Specification and Evaluation of Remotely Sensed
Data

Specification of suitable remotely sensed data entails
examining the ideal data dimensions set out in the
scene model in relation to the spatial, spectral, radio-
metric, and temporal dimensions of commercially avail-
able image data sets. A compliance matrix approach is
applied to evaluate which remotely sensed data sets
meet or can be transformed to meet the ideal spatial,
spectral, radiometric, and temporal specifications. The
compliance matrix is constructed with one column list-
ing the scene model dimensions, the next column con-
taining dimensions of the available data (e.g., Table 2).
The specified scene model and available data dimen-
sions are compared and labeled as suitable, unsuitable,
or able to be transformed to match. If the transform
option is specified, a data rescaling approach is pre-

Table 1. Draft scene model specifications (ideal image dimensions) for a data set to estimate projective foliage
cover in a restored southern California wetland

Information required biophysical parameter (horizontally project foliage cover), % cover in each vegetation
species patch

Spatial scale grain � smallest vegetation patch, 0.5–1.0 m
extent � wetlands complex, 5 � 2 km

Temporal scale one image per year at time of maximum spectral separability for all vegetation cover
types

Environment type restored tidal saltmarsh
Components and hierarchy constraint � wetland vegetation complex

focus � vegetation species patches
mechanism � individual plants

Spatial dimensions H-resolution
grain � 0.5–1.0 m
extent � 3.14 � 1.57 km
interannual: match pixel sizes and ensure accurate geometric registration.

Temporal dimensions Optimal date � June or July
Solar conditions � 0°–20° zenith angles (11:30 am � 2 hours) (12:30 pm � 2 hours)
tidal conditions � mean low tide (at least ��1.5ft MSL)
interannual: near anniversary dates and acquisition times

Spectral dimensions red 600–680 nm
NIR 750–900 nm
interannual: match spectral band centers and widths

Radiometric dimensions grain (quantization): 0.01 (reflectance)
extent (dynamic range): green (0.04), red (0.07), and NIR (0.14)
interannual: match quantitation and dynamic range

Error tolerance levels patch boundary delineation � minimum patch size
vegetation species’ patch labeling
regression model cover estimate error for each vegetation cover type (��5%) and

overall relationships used must have R2 � 0.85
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sented to change the spatial, spectral, or radiometric
dimensions to those that are required.

Selection of Spatial Analytic Technique(s) to Provide
Required Information

Selecting the spatial analytic technique(s) to be ap-
plied to the remotely sensed data as specified by the
scene model is a two-step process. In the first step, the
type of information required is used as the basis for
identifying a broad grouping of spatial analytic tech-
niques capable of providing the information. Three
broad categories of spatial analytic techniques were
identified based on the similarities in the type of output
information they produce, as listed below (see Phinn
1997 for full description): (1) landscape composition
analyses to identify components of the landscape that
have not been categorized or classified into nominal
land-cover classes; (2) landscape element pattern anal-
yses applied to image data categorized into nominal
land-cover classes, and spatial structure analyses ap-
plied to continuous data, to quantify dimensions of

their pattern and distribution; and (3) quantification
and mapping of biophysical parameters from empirical
or deterministic inversion of remotely sensed data to
estimate physical dimensions and characteristics of fea-
tures controlling their reflectance.

In the second step, once a broad grouping of spatial
analytic techniques has been identified as matching the
information requirements of the project, suitable indi-
vidual analytic approaches can be selected. Selection of
a suitable approach is achieved by evaluating each of
the following five criteria in relation to the information
from the scene model and evaluation of available re-
motely sensed data: (1) Remotely sensed data specifi-
cations meet the assumptions and input requirements
for the selected technique. (2) The output information
from application of the technique has error levels
within those acceptable to the mapping or monitoring
problem. (3) Output information is at the appropriate
spatial and temporal scales for the scene model and the
mapping or monitoring problem. (4) Output informa-
tion can be obtained within temporal and financial con-

Table 2. Compliance matrix for comparison of candidate image data sets to ideal data set (scene model) for
Sweetwater Marsh restoration monitoring problem

Parameter Scene model
Data, ADAR 5500
10 Jun 95, 27 Jul 96 Level of match

Transform
option

Spatial N/A
Pixel size 0.75–2.0 m 0.72 m, 0.75 m suitable
Scene extent 3140 � 1570 m 5000 � 2000 m suitable
H/L resolution H H suitable

Spectral N/A
No. of bands 2
Position of

bands
red 600–680 nm red 610–680 nm suitable
NIR 750–900 nm NIR 780–1000 nm suitable
NDVI NDVI suitable

Radiometric N/A
Quantization

levels
0.01–0.05 (RL) 0.0003 (RL)

(Stow and others 1996)
suitable

Dynamic range red 0.07 (RL) red unable to assess
NIR 0.14 (RL) NIR

Temporal June July N/A
Date June or July 10 Jun 95, 28 Jul 96 yes yes
Solar time 0°–20° solar zenith 10–11:

30 am, 12:30–2 pm
11.45am, 1.30pm, 2.30pm

(DST � PST � 1hr)
�1.5ft, �1.4ft

yes yes

Tide levels less than �1.5ft MSL yes yes
Interval between

images
12 months no 6/94 available 8/93,

8/95 available
no yes

Error levels N/A N/A
Types patch delineation patch

labeling
not processed

Magnitude delineation error �
minimum patch size

Level of processing field checked image maps not processed N/A N/A
Time � cost not specified N/A N/A N/A
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straints. (5) Output information is in a format that can be
used directly or combined with other data as required.

A technique is selected if it meets all of the criteria
specified above. Techniques may be evaluated until one
is found that meets the most number of criteria.

Cost–Benefit Analysis

Assessment of the criteria identified in the five sub-
sections above should provide specifications for select-
ing remotely sensed data capable of addressing the
initial environmental mapping and monitoring ques-
tion. If there are a number of data sets that meet the
desired criteria, then the most important selection cri-
teria may be the financial and temporal resources avail-
able for the project. In these cases a cost–benefit anal-
ysis can be derived. The costing structure is derived by
incorporating data purchase fees and person hours
worked on the projects. A frequently used benefit mea-
sure is the overall accuracy of the output product. This
approach requires trial processing for each application
problem to identify data costs, image processing fees,
and field assessment. Green and others (1996, 2001)
developed and applied this approach to provide a
quantitative comparison of airborne and satellite image
data sets for mapping habitat and structural parameters
in tropical coastal environments, while Phinn and oth-
ers (2000b, 2001) applied a similar approach for mon-
itoring environmental indicators in tropical forests.

Application of the Framework

To demonstrate the procedures and the benefit
derived from the framework, its application in one
project is presented in the following section. Other
applications of the framework, with less detailed de-
scriptions of its theoretical basis and benefits, have
been presented for mapping wetland vegetation com-
position on a regional scale in the wet– dry tropics in
northern Australia (Phinn and Hill 1998, Phinn and
others 1999, 2000a), mapping urban growth in a
coastal catchment (Phinn and Stanford 2001), and
evaluating the feasibility of remote sensing for mon-
itoring environmental indicators in tropical forests
(Phinn and others 2001). The case study described
herein relates to a wetland restoration monitoring
program in southern California that required an ap-
proach to map vegetation species composition and
biophysical properties (Phinn and others 1999). Ta-
ble 3 outlines the mapping and monitoring require-
ments and the following paragraphs describe the
implementation of the framework.

Habitat Mapping in a Restored Wetland Environment

The aim of this project was to provide maps of the
spatial distribution of restored vegetation cover in the
low, middle and high marsh vegetation communities
ofSweetwater Marsh National Wildlife Reserve, San Di-
ego County, California, USA (Figure 2). Hence, image

Table 3. Information requirements for the case studies

Requirements Case study 1: southern California wetlands

Type of
information Landscape composition Biophysical parameters

Environment type Restored tidal saltmarsh Restored tidal saltmarsh
Grain and extent

required
Minimum vegetation species patch size was for

cordgrass patch �1.0 m
Minimum vegetation species patch size was

for cordgrass patch �1.0 m
Vegetation/substrate dominance and marsh cover type

maps for the restored wetland area, approx. 45 acres
or 5 � 2 km

Vegetation cover estimate maps for the
restored wetland area, approx. 45 acres or
5 � 2 km

Temporal scale One image per year for cordgrass mapping One image per year prior to field sampling
home ranges

Error types and Types: Types:
levels Patch boundary delineation Marsh cover boundary delineation

Labeling errors for vegetation and marsh cover types Labeling errors for marsh cover types
Cover estimations from model

Levels: Levels:
Patch boundary delineation must be within minimum
patch dimensions

Patch boundary delineation must be within
minimum patch dimensions

Labeling errors tolerable will depend on areal extent
and importance of class

Labeling errors tolerable will depend on
areal extent and importance of class
Cover estimate error for each pixel must
be less than �5%
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data sets were required to first map the vegetation
composition of the wetlands and then to estimate foli-
age-projective-cover (FPC) in each vegetation commu-
nity. The vegetation mapping approach (Phinn and
others 1999) was required to determine the condition
of breeding habitat for an endangered bird species
native to the saltmarshes, the light-footed clapper rail
(Rallus longirostris ssp. levipes).

Input Information Requirements and Definition of the
Scene Model

Prior to establishing a suitable scene model, a sum-
mary was prepared of the restoration monitoring ob-
jective, required information, and type of environment
being monitored. The restoration goal was to establish
a tidal wetland ecosystem capable of supporting a spec-

Figure 2. Location of the Sweetwater Marsh National Wildlife Reserve, San Diego County, California, USA.
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ified number of breeding home ranges for the light-
footed clapper rail (Zedler 1993). Assessment of the
success of the project was based on delimiting patches
of different marsh vegetation species to establish the
areal extent and spatial distribution of high, middle,
and low marsh vegetation assemblages. Horizontal FPC
in each elevation zone must meet several criteria in

each potential home range: (1) low marsh must contain
50% cover of pure cordgrass (Spartina foliosa), and have
stands 90–100 m2 with �90% cover; (2) middle marsh
areas must have at least 70%; and (3) in high marsh
�10% of their ground cover must come from woody
species.

In the following stages, relevant literature (Table 4)

Table 4. Source data for spatial–temporal plot of southern California wetland structure and processes

Structure/
process

Spatial scale
(length)

Temporal
scale

Vegetative
process

Geomorphologic
process References

Leaves, stems,
roots

0.01m (leaf) minute leaf not applicable Zedler (1982), Macdonald
(1988), Zedler and others
(1992)

0.5m (stem) days physiology
and growth

Individual
plants

0.01 m (algae) minute plant
physiology
and growth

not applicable Zedler (1982), Mitsch and
Gosselink (1993), Zedler
and others (1992)

1.0 m (herb, shrub) year

growth and
replacement

Vegetation
patches

0.5 m (pickleweed) month patch and gap
dynamics

not applicable Zedler (1982), Macdonald
(1988), Mitsch and
Gosselink (1993), Zedler
and others (1992)

�100 m (cordgrass) 100 years dynamics
secondary

succession

Channel
morphology

0.001 m (microrill) minutes patch and gap precipitation and
overland flow

Pethick (1991), Zedler and
others (1992), Mitsch and
Gosselink (1993), Ferren
and others (1995)

�100 m (channels) months dynamics
years Secondary

succession
Tidal and flood

levels
sea level change

Shoreline
(estuarine
and
oceanic)

0.01 m (height) hours patch and gap
dynamics

Long- and short-term
wave climate

Bloom (1983), Flick and
Cayan (1984), Pethick
(1991)

�100 m (width) months
�100

years
secondary Sea level change
succession

Wetland
complex

100 m (remnant) hours patch and gap
dynamics

shoreline position
and sea level
change

Zedler (1982), Macdonald
(1988), Zedler and others
(1992), Ferren and others
(1995)

10 km (Pt Mugu) � 1000
years secondary

succession channel morphology

Southern
California
ecoregion

100 m (smallest) years speciation,
migration
and
extinction

Climate change Macdonald (1988), Zedler
(1982, 1991), Zedler and
others (1992)

�100 km (largest) 106 years sea level change

landscape
dynamics

tectonic movement

Tides and
flooding

0.01 m (shoreline) month
years10 km (wetland)

Herbivory (wetland) days
0.01 m (leaf) months

Pathogens 100 m (patch) days
months

Human 0.01 m (leaf) days
activity 100 m (patch) years

0.01 m (leaf)
10 km (wetland)
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and exploratory field and image analyses were used to
identify the vegetative components of the restored wet-
lands environment and their hierarchical spatial order-
ing. The characteristic spatial dimensions for patches of
low, middle, and high marsh vegetation were defined
and used to estimate the ideal spatial dimensions for a
remotely sensed data set that would enable the location
and extent of the patches to be clearly mapped, i.e., the
spatial dimensions of a scene model. Estimates of FPC
were required within each of the marsh elevation–veg-
etation zones to assess the progress towards restoration
monitoring goals. Structural differences between vege-
tation species common to each elevation zone required
development of different models for each of the low,
middle, and high marsh zones to accurately estimate
FPC. Characteristic scales of structures and processes
found in a restored tidal saltmarsh environment (Pacif-
ic coast, southern California) were identified from the
literature (Table 4) and converted into a spatial tem-
poral plot (Figure 3). This step represents the integra-
tion of scalar hierarchy theory with the selection of
suitable remotely sensed data for the project. The spa-
tial and temporal scales of relevant environmental
structures and processes provide a basis to select image
data and processing techniques at matching scales
(e.g., Walker and Walker 1991).

Exploratory Spatial and Spectral Analysis of Available
Remotely Sensed Data

A number of image and ground-based data sets had
already been collected for the Sweetwater Marsh site,
allowing an exploratory analysis to be conducted on the

type(s) of information able to be extracted at multiple
spatial scales (Table 5). Exploratory data analysis was
based on extensive ground-based spectral–radiometric
data and high-spatial resolution, multispectral image
data sets collected every three months between April
and October of 1993–1996. Spatial structural analyses
focused on assessing the characteristic scales of features
presented in Table 4. The spatial analysis techniques
applied were scale-variance analysis, image classifica-
tion, and semivariogram analysis. Results confirmed the
spatial dimensions of saltmarsh vegetation patches and
identified an optimal image pixel size for discriminat-
ing saltmarsh vegetation types. The most effective spec-
tral bandwidths for discriminating saltmarsh vegetation
communities were identified from divergence analysis
(basically measuring the multivariate distances) of field
located “training-sites” and variance analysis of hand-
held imaging spectrometer data sets. A combination of
red and near-infrared (NIR) spectral bandwidths col-
lected from 0.75 to 2.0 m pixels were found to be most
effective for discriminating different saltmarsh vegeta-
tion species.

The multitemporal nature of the image and field
data also enabled the time of year at which vegetation
communities were most spectrally separable to be de-
fined. Hence, collection of image data with 1.0 m pixels
using red and NIR bandwidths in the June–July period
maximizes the probability of mapping the location of
different saltmarsh vegetation communities. In total,
the ESDA enabled verification of scene model dimen-
sions, ensuring that the saltmarsh vegetation patches
would be detectable by using the imaging dimensions
specified in the scene model.

Specification and Evaluation of Suitable Remotely
Sensed Data

Once exploratory analyses of the image data sets had
been completed, the next stage involved comparisons
of dimensions of available image data sets to those
established in the scene model (Table 1). A compliance
matrix (Phinn 1998) (Table 1) was then used to com-
pare scene model dimensions to those of the candidate
data set (Table 2). Each parameter of the scene model
and candidate data set were evaluated and labeled as
suitable, able to transform, unable to assess, or not
applicable (NA). The data set with the highest suitabil-
ity should then be selected as the optimal data set.

Specification of Processing and Analytical Options

The selection of an optimal image analysis approach
requires consideration of the type of information re-
quired for the monitoring program and the require-
ments of specific analytic approaches. The restoration

Figure 3. Spatial–temporal plot for southern California wet-
land structure and processes derived from Table 4.
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monitoring program requires hardcopy and digital,
georeferenced maps of FPC in high, middle, and low
marsh cover type patches. A suitable technique, based
on development of an empirical relationship between
spectral and ground data was selected from the inven-
tory tables (Phinn 1997), with consideration of the five
criteria listed in the section above on selection of spatial
analytic techniques.

Output Information

To enable delivery of the required monitoring infor-
mation the final output specifications set out the pre-
sentation and storage medium to be used, established
an accurate processing lineage and documented poten-
tial error sources and magnitudes. Output data were
provided in hard- and soft-copy formats, as thematic
maps for the restoration site indicating estimated veg-
etation cover and residual error levels, with tabular
summaries of errors in estimates when compared to
field data points. Estimates were also provided of error
sources and means to quantify these where possible,
e.g., band to band spatial registration �1.0 pixel and
georeferencing to a base orthorectified image with an
average RMSE �0.5 pixel (Phinn and others 1996).
The empirical model relating spectral response to FPC
also has error in the model fit to the data set used. An
overall measure of the model’s accuracy is provided by
the adjusted r2 value, while each cover estimate is ac-
companied by a residual error level. In addition to a
cover map, a map of residual error estimates may also
be plotted.

Framework Results Versus Ad-Hoc Solution

The framework was applied to the restoration mon-
itoring problem after a completed project had selected
an image data set and processing technique (Phinn and
others 1996). This provided a more ‘ad-hoc’ solution to
which the results of applying the framework were com-
pared. A number of differences were obtained by using

the framework to select a suitably scaled image data set
and processing technique (Table 6). However, the most
significant differences were obtained from the resulting
image classification operations where data were se-
lected based on application of the framework and the
processing technique provided a somewhat higher
overall adjusted map accuracy (67%) than the ad-hoc
solution (62%).

Conclusions and Future Applications of the
Framework

The framework described provides a procedure for
environmental scientists and managers to select remotely
sensed data and analysis techniques to map and monitor
the spatial characteristics of vegetation and landscape
structures. This represents a practical application of hier-
archy theory and the large body of techniques for select-
ing optimal scales of image data sets. The spatial dimen-
sions of vegetation and landscape elements and their
hierarchical structuring were integrated with the known
spatial and temporal dimensions of the required mapping
or monitoring data to produce a hierarchically structured
scene model. The scene model contains specifications for
the spatial, spectral, and radiometric resolutions of an
image data set that will enable the target feature or pro-
cess to be mapped or monitored at the scale required. In
developing this framework two of the fundamental prob-
lems encountered when analyzing landscape structure
from remotely sensed data have been addressed. In the
first case, the landscape’s spatial structure is recognized
and incorporated into the design and execution of the
analysis. Second, a means is provided to ensure that the
data collected and information from analyses of these
data are at the appropriate scale and format to answer
questions being asked of them. Hence the framework may
serve as a heuristic tool for selecting appropriate remotely

Table 5. Data–lineage assessment of candidate data sets for Sweetwater Marsh restoration monitoring project

Sensor, Date
Pixel
size Spectral resolution Geometric correction Radiometric correction

ADAR 5000 0.52m blue (424–494 nm) band–band registration none
18 Mar 92 green (521–599 nm)

red (620–694 nm)
NIR (813–1001 nm)

1 Aug 92 0.67m as above band–band registration none
4 Nov 92 0.67m as above band–band registration none
3 Apr 93 0.67m as above band–band registration none
1 Aug 93 0.67m as above band–band registration none
1 Oct 93 0.67m as above band–band registration none
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sensed data and analytic techniques for specific project
and type of environment.

Previous applications of the framework to environmen-
tal monitoring problems illustrated several key findings.
The first was related to the application of an objective
mechanism in the framework to identify relevant aspects
of the monitoring problem and environmental character-
istics for selecting remotely sensed data and analysis tech-
niques. This may be particularly useful when the monitor-
ing is carried out in compliance with a legal mandate (e.g.
endangered species protection). Secondly, the selection
of remotely sensed data and analysis technique(s) was
driven explicitly by information requirements and the
spatial and temporal characteristics of the environment in
question. Additional advantages of the framework were
that it:

● defined the environmental monitoring problem
more explicitly to enable linkage with suitable data/
analysis techniques;

● provided a means to standardize the type and form
of dimensions of remotely sensed data required for
a project by defining dimensions of the scene mod-
el; and

● served as a heuristic tool for defining the dimen-
sions of remotely sensed data required for a moni-
toring problem.
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